GraphQL vs REST: A Complete Guide to Choosing the Right API Paradigm

For over two decades, REST (Representational State Transfer) has been the de facto standard for web APIs. But the rise of mobile apps, complex frontends, and microservices architectures gave birth to GraphQL—a query language that promises to solve REST's biggest pain points.
Should you abandon REST for GraphQL? The answer is nuanced. Let's break down the technical trade-offs.
The Evolution of API Paradigms
API Evolution Timeline
──────────────────────────────────────────────────────────────────
1990s 2000s 2010 2015 2020s
│ │ │ │ │
SOAP/XML → REST/JSON → Mobile Explosion → GraphQL → Federation
│ │
└── Problems ──┘
emerged
Key Inflection Points:
├── 2000: REST formalized by Roy Fielding
├── 2010: Mobile apps need efficient data fetching
├── 2012: Facebook creates GraphQL internally
├── 2015: GraphQL open-sourced
├── 2020: Apollo Federation for microservices
└── 2023: Both REST and GraphQL thrive for different use cases
Understanding REST
REST is resource-oriented. You have predictable endpoints that represent entities:
REST API Structure
──────────────────────────────────────────────────────────────────
Endpoint Method Purpose
────────────────────────────────────────────────────────────────
/users GET List all users
/users/{id} GET Get single user
/users POST Create user
/users/{id} PUT Replace user
/users/{id} PATCH Update user fields
/users/{id} DELETE Delete user
/users/{id}/posts GET List user's posts
/users/{id}/posts/{postId} GET Get specific post
REST Example
// GET /users/123
const response = await fetch('/api/users/123');
const user = await response.json();
// Response
{
"id": "123",
"name": "John Doe",
"email": "john@example.com",
"avatar": "https://...",
"address": {
"street": "123 Main St",
"city": "San Francisco",
"state": "CA",
"zip": "94102"
},
"createdAt": "2024-01-15T10:30:00Z",
"lastLogin": "2024-06-18T08:45:00Z",
"preferences": {
"theme": "dark",
"notifications": true,
"language": "en"
}
}
REST Problems at Scale
| Problem | Example | Impact |
|---|---|---|
| Over-fetching | Need just name, get entire user object | Wasted bandwidth, slower mobile |
| Under-fetching | Need user + posts = 2 requests | Waterfall latency, complexity |
| N+1 Problem | 10 users → 10 requests for their posts | 11 round trips |
| Versioning | /v1/users, /v2/users | Maintenance burden |
| Documentation | Swagger/OpenAPI separate from code | Can drift from reality |
Understanding GraphQL
GraphQL is a query language. You ask for exactly what you need:
# Single request gets exactly what you need
query GetUserWithPosts {
user(id: "123") {
name
email
posts(first: 5) {
title
excerpt
createdAt
}
}
}
GraphQL Response
{
"data": {
"user": {
"name": "John Doe",
"email": "john@example.com",
"posts": [
{
"title": "Introduction to GraphQL",
"excerpt": "GraphQL is a query language...",
"createdAt": "2024-06-15"
},
{
"title": "REST vs GraphQL",
"excerpt": "When should you use each...",
"createdAt": "2024-06-10"
}
]
}
}
}
GraphQL Schema Definition
type User {
id: ID!
name: String!
email: String!
avatar: String
posts(first: Int, after: String): PostConnection!
followers: [User!]!
following: [User!]!
createdAt: DateTime!
}
type Post {
id: ID!
title: String!
content: String!
excerpt: String
author: User!
comments(first: Int): CommentConnection!
likes: Int!
publishedAt: DateTime
}
type Query {
user(id: ID!): User
users(first: Int, after: String, filter: UserFilter): UserConnection!
post(id: ID!): Post
posts(first: Int, after: String, filter: PostFilter): PostConnection!
}
type Mutation {
createUser(input: CreateUserInput!): User!
updateUser(id: ID!, input: UpdateUserInput!): User!
createPost(input: CreatePostInput!): Post!
likePost(id: ID!): Post!
}
Head-to-Head Comparison
Data Fetching Efficiency
Scenario: Display user profile with 5 recent posts
──────────────────────────────────────────────────────────────────
REST Approach:
1. GET /users/123 → 1 request (200ms)
2. GET /users/123/posts → 1 request (150ms)
Total: 2 requests, 350ms, ~15KB transferred
GraphQL Approach:
1. POST /graphql → 1 request (250ms)
Total: 1 request, 250ms, ~3KB transferred
Savings: 28% faster, 80% less data
Caching Complexity
REST Caching (Simple)
──────────────────────────────────────────────────────────────────
Client ──► CDN ──► Origin
│
└── Cache: /users/123 → response
TTL: 1 hour
Invalidation: Easy (purge specific URL)
HTTP headers handle everything:
Cache-Control: public, max-age=3600
ETag: "33a64df551425fcc55e4d42a148795d9f25f89d4"
GraphQL Caching (Complex)
──────────────────────────────────────────────────────────────────
Client ──► CDN (can't cache POST) ──► Origin
│
┌─────────────────┘
▼
Application Cache
├── Normalized cache (Apollo Client)
├── Persisted queries (hash → query)
└── Cache-by-ID strategies
Requires:
├── Client-side cache normalization
├── Persisted queries for CDN caching
└── Cache invalidation is still hard
Security Considerations
GraphQL Security Challenges
──────────────────────────────────────────────────────────────────
1. Query Depth Attack
─────────────────────
query Evil {
user(id: "1") {
posts {
author {
posts {
author {
posts { # Infinite nesting...
}
}
}
}
}
}
}
Mitigation: Query depth limiting (e.g., max depth = 5)
2. Query Complexity Attack
─────────────────────────
query ExpensiveQuery {
users(first: 1000) {
posts(first: 100) {
comments(first: 100) {
author {
followers(first: 100) {
# 1000 × 100 × 100 × 100 = 1 billion records
}
}
}
}
}
}
Mitigation: Query complexity analysis and limits
3. Introspection in Production
─────────────────────────────
query IntrospectionQuery {
__schema {
types {
name
fields {
name
}
}
}
}
Mitigation: Disable introspection in production
REST Security (Generally Simpler)
// Rate limiting by endpoint is straightforward
const rateLimits = {
"GET /users": { requests: 1000, window: "1h" },
"POST /users": { requests: 10, window: "1h" },
"GET /posts": { requests: 2000, window: "1h" },
};
// Authorization is resource-based
app.get("/users/:id", authorize("users:read"), getUser);
app.put("/users/:id", authorize("users:write"), updateUser);
Implementation Comparison
REST with Next.js API Routes
// app/api/users/[id]/route.ts
import { NextRequest, NextResponse } from "next/server";
export async function GET(
request: NextRequest,
{ params }: { params: { id: string } }
) {
const user = await db.users.findUnique({
where: { id: params.id },
include: {
posts: {
take: 5,
orderBy: { createdAt: "desc" },
},
},
});
if (!user) {
return NextResponse.json({ error: "User not found" }, { status: 404 });
}
return NextResponse.json(user);
}
export async function PATCH(
request: NextRequest,
{ params }: { params: { id: string } }
) {
const body = await request.json();
const user = await db.users.update({
where: { id: params.id },
data: body,
});
return NextResponse.json(user);
}
GraphQL with Apollo Server
// graphql/resolvers.ts
import { Resolvers } from "./generated/graphql";
const resolvers: Resolvers = {
Query: {
user: async (_, { id }, context) => {
return context.dataSources.users.getUser(id);
},
users: async (_, { first, after, filter }, context) => {
return context.dataSources.users.getUsers({ first, after, filter });
},
},
User: {
// Field-level resolver - only runs if field is requested
posts: async (user, { first }, context) => {
return context.dataSources.posts.getPostsByUser(user.id, { first });
},
followers: async (user, _, context) => {
return context.dataSources.users.getFollowers(user.id);
},
},
Mutation: {
createUser: async (_, { input }, context) => {
return context.dataSources.users.createUser(input);
},
likePost: async (_, { id }, context) => {
return context.dataSources.posts.likePost(id, context.userId);
},
},
};
// DataLoader for N+1 prevention
class PostsDataSource {
private loader = new DataLoader(async (userIds: string[]) => {
const posts = await db.posts.findMany({
where: { authorId: { in: userIds } },
});
// Group posts by author
const postsByUser = new Map<string, Post[]>();
for (const post of posts) {
const userPosts = postsByUser.get(post.authorId) || [];
userPosts.push(post);
postsByUser.set(post.authorId, userPosts);
}
return userIds.map((id) => postsByUser.get(id) || []);
});
getPostsByUser(userId: string, { first }: { first?: number }) {
return this.loader.load(userId).then((posts) => posts.slice(0, first));
}
}
Decision Framework
When to Use REST
| Scenario | Why REST |
|---|---|
| Simple CRUD operations | Less overhead, predictable patterns |
| Public APIs | Easier for external developers to understand |
| Heavy caching needs | HTTP caching is mature and well-supported |
| File uploads | Multipart forms are straightforward |
| Team new to GraphQL | Learning curve is real |
| Microservices with clear boundaries | Each service owns its resources |
When to Use GraphQL
| Scenario | Why GraphQL |
|---|---|
| Mobile applications | Minimize data transfer and round trips |
| Complex, nested data | Single request for deep object graphs |
| Rapidly evolving frontend | Frontend can request new fields without backend changes |
| Multiple client types | Web, mobile, TV apps need different data shapes |
| API gateway/BFF pattern | Aggregate multiple microservices |
| Strong typing requirements | Schema is the contract |
Decision Flowchart
GraphQL vs REST Decision Tree
──────────────────────────────────────────────────────────────────
Start
│
├── Is this a public API for external developers?
│ ├── Yes → REST (more familiar, easier to document)
│ └── No ──┐
│ │
├─────────────┘
│
├── Do you have multiple client types (web, mobile, etc.)?
│ ├── Yes → Consider GraphQL
│ └── No ──┐
│ │
├─────────────┘
│
├── Is your data highly relational with deep nesting?
│ ├── Yes → GraphQL shines here
│ └── No ──┐
│ │
├─────────────┘
│
├── Do you need aggressive HTTP caching at CDN level?
│ ├── Yes → REST (simpler caching)
│ └── No ──┐
│ │
├─────────────┘
│
├── Does your team have GraphQL experience?
│ ├── No → REST (lower learning curve)
│ └── Yes → Either works, choose based on other factors
│
└── Final Decision: Consider using BOTH for different use cases
Hybrid Approaches
Many successful architectures use both:
Hybrid Architecture Example
──────────────────────────────────────────────────────────────────
┌─────────────────────────────────────┐
│ API Gateway │
│ (Kong, AWS API Gateway) │
└──────────────┬──────────────────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ REST APIs │ │ GraphQL BFF │ │ Webhooks │
│ │ │ │ │ │
│ • Public APIs │ │ • Mobile app │ │ • Event │
│ • Webhooks │ │ • Web app │ │ notifications│
│ • Simple CRUD │ │ • Aggregation │ │ • Integrations │
└────────────────┘ └────────────────┘ └────────────────┘
│ │ │
└────────────────────┼────────────────────┘
│
┌──────────────┴──────────────┐
│ │
▼ ▼
┌───────────────┐ ┌───────────────┐
│ Microservice A│ │ Microservice B│
│ (REST) │ │ (REST) │
└───────────────┘ └───────────────┘
GraphQL Federation
For large-scale systems, Apollo Federation allows composing multiple GraphQL services:
# Users Subgraph
type User @key(fields: "id") {
id: ID!
name: String!
email: String!
}
extend type Query {
user(id: ID!): User
}
# Posts Subgraph
type Post @key(fields: "id") {
id: ID!
title: String!
author: User!
}
extend type User @key(fields: "id") {
id: ID! @external
posts: [Post!]!
}
# Gateway composes them into unified graph
Performance Comparison
Performance Benchmarks (Typical Scenarios)
──────────────────────────────────────────────────────────────────
Scenario 1: Fetch user profile (simple)
├── REST: ~50ms (1 request)
├── GraphQL: ~55ms (1 request, slightly more parsing)
└── Winner: Tie
Scenario 2: Fetch user + posts + comments (nested)
├── REST: ~300ms (3 sequential requests)
├── GraphQL: ~120ms (1 request with nested resolvers)
└── Winner: GraphQL (2.5x faster)
Scenario 3: Heavy caching scenario
├── REST: ~10ms (CDN cache hit)
├── GraphQL: ~80ms (app-level cache, no CDN)
└── Winner: REST (8x faster with cache)
Scenario 4: Mobile with poor connectivity
├── REST: ~2000ms (multiple round trips compound latency)
├── GraphQL: ~800ms (single request, less data)
└── Winner: GraphQL (2.5x faster, less battery)
Key Takeaways
- Neither is universally better—context determines the right choice
- REST excels at simple CRUD, public APIs, and cacheable resources
- GraphQL excels at complex data needs, mobile apps, and multi-client scenarios
- Security requires attention in both, but GraphQL needs explicit safeguards
- Caching is simpler with REST—GraphQL requires more sophisticated strategies
- Hybrid approaches work well—use REST for simple services, GraphQL for aggregation
- Team experience matters—don't adopt GraphQL without training
- Start with REST if uncertain—you can always add GraphQL later
The best API is the one that serves your users and developers effectively. Sometimes that's REST, sometimes GraphQL, and often it's both working together.
Need help designing your API architecture? Contact EGI Consulting for expert guidance on REST, GraphQL, API gateways, and developer experience optimization.
Related articles
Keep reading with a few hand-picked posts based on similar topics.

React Server Components (RSC) are transforming web development. Learn how to leverage server-side rendering to reduce bundle sizes, improve Core Web Vitals, and build faster applications.

Microservices are popular, but they aren't always the answer. Learn the trade-offs between monolithic and distributed architectures with decision frameworks and real-world migration strategies.

The tech industry's carbon footprint rivals aviation. Learn how to measure, reduce, and optimize your software's environmental impact with Green Software Engineering principles.