Skip to main content

Microservices vs. Monoliths: A Complete Guide to Making the Right Architectural Choice in 2024

Michael Ross
14 min read
Microservices vs. Monoliths: A Complete Guide to Making the Right Architectural Choice in 2024

"We need to rewrite everything in microservices." It's a phrase heard in boardrooms and engineering meetings everywhere. But is it always the right call? The answer, as with most architectural decisions, is "it depends."

In this comprehensive guide, we'll move beyond the hype to explore when each architecture truly shines, provide a decision framework for your specific context, and share battle-tested strategies for migration when it's genuinely needed.

Understanding the Architectural Spectrum

Before diving into the debate, let's clarify that architecture isn't binary. There's a spectrum of options:

ArchitectureDescriptionComplexityTeam Size
MonolithSingle deployable unitLow1-15
Modular MonolithMonolith with strict module boundariesLow-Medium5-30
Service-OrientedFew large servicesMedium15-50
MicroservicesMany small, independent servicesHigh30-500+
ServerlessFunction-level decompositionVery HighVaries

The Case for the Monolith

A Modular Monolith is often the best choice for startups and small-to-medium teams. Don't let "monolith" become a dirty word—some of the world's most successful applications (Shopify, Basecamp, Stack Overflow) run on monolithic architectures.

Advantages of Monolithic Architecture

1. Simplicity

  • Deployment is one artifact
  • Testing is straightforward end-to-end
  • Local development matches production closely
  • Debugging doesn't require distributed tracing

2. Performance

  • Function calls are in-memory, not over the network
  • Zero network latency overhead
  • No serialization/deserialization costs
  • Simpler caching strategies

3. Consistency

  • ACID transactions are easy with a single database
  • No distributed transaction complexity
  • Consistent data views without eventual consistency concerns
  • Simpler error handling and rollback

4. Developer Experience

  • Single codebase to understand
  • Easier onboarding for new team members
  • IDE features work seamlessly (refactoring, find usages)
  • Simpler dependency management

When to Stay Monolithic

Consider maintaining a monolith when:

  • Team size < 20 engineers
  • Domain boundaries are fuzzy or changing rapidly
  • Throughput requirements are manageable
  • Strong consistency is a priority
  • Your team lacks distributed systems expertise
  • Time-to-market is critical

Building a Good Monolith

┌─────────────────────────────────────────────────────┐
│                  Modular Monolith                   │
├─────────────────────────────────────────────────────┤
│  ┌─────────────┐ ┌─────────────┐ ┌─────────────┐   │
│  │   Orders    │ │  Inventory  │ │   Billing   │   │
│  │   Module    │ │   Module    │ │   Module    │   │
│  │  ─────────  │ │  ─────────  │ │  ─────────  │   │
│  │ • Services  │ │ • Services  │ │ • Services  │   │
│  │ • Entities  │ │ • Entities  │ │ • Entities  │   │
│  │ • Repos     │ │ • Repos     │ │ • Repos     │   │
│  └──────┬──────┘ └──────┬──────┘ └──────┬──────┘   │
│         │              │              │            │
│         └──────────────┼──────────────┘            │
│                        │                           │
│              ┌─────────┴─────────┐                 │
│              │  Public APIs Only  │                 │
│              │  (No direct DB     │                 │
│              │   access across    │                 │
│              │   module bounds)   │                 │
│              └───────────────────┘                 │
│                        │                           │
│              ┌─────────┴─────────┐                 │
│              │   Shared Database  │                 │
│              └───────────────────┘                 │
└─────────────────────────────────────────────────────┘

Key principles for a maintainable monolith:

// ✅ Good: Clear module boundaries with public APIs
// orders/api/OrderService.ts
export interface OrderService {
  createOrder(customerId: string, items: OrderItem[]): Promise<Order>;
  getOrder(orderId: string): Promise<Order>;
}

// ❌ Bad: Direct database access across modules
// Don't do this - billing module reaching into orders table
const order = await db.query("SELECT * FROM orders WHERE id = ?", [orderId]);

The Case for Microservices

Microservices excel when you need to scale people and complexity, not just traffic. They're an organizational solution as much as a technical one.

Advantages of Microservices

1. Independent Deployment

  • Team A can deploy the Billing Service without coordinating with Team B on the User Service
  • Reduces deployment risk and blast radius
  • Enables continuous delivery at scale
  • Teams own their release cadence

2. Technology Heterogeneity

  • Write the machine learning service in Python
  • Build the real-time notification service in Go
  • Use the right tool for each job
  • Easier to adopt new technologies incrementally

3. Fault Isolation

  • If the recommendation engine crashes, the checkout flow can still function
  • Failures are contained to individual services
  • Easier to implement circuit breakers and bulkheads
  • Graceful degradation becomes possible

4. Organizational Scalability

  • Teams can work independently
  • Clear ownership boundaries
  • Reduced cognitive load per team
  • Enables Conway's Law alignment

The Hidden Costs of Microservices

Before embracing microservices, understand the true costs:

Cost CategoryImpactMitigation
Distributed ComplexityNetwork calls fail, need retries, circuit breakers, eventual consistencyInvest in resilience patterns
Observability TaxNeed robust tracing to debug requests spanning 10+ servicesJaeger, Zipkin, DataDog
DevOps Overhead50 services = 50x CI/CD configPlatform engineering team
Data ConsistencyNo ACID across servicesSaga patterns, event sourcing
Testing ComplexityIntegration testing across servicesContract testing, service virtualization
LatencyNetwork hops add millisecondsCaching, async patterns
Debugging DifficultyDistributed logs, traces, metricsCentralized observability stack

When Microservices Make Sense

Consider microservices when:

  • Team size > 50 engineers
  • Clear, stable domain boundaries
  • Different services have vastly different scaling needs
  • Teams need independent deployment velocity
  • Different parts require different technologies
  • Organization structure aligns with service boundaries

The Decision Framework

Use this flowchart to guide your architectural decision:

                    ┌─────────────────────┐
                    │ Is your team > 20   │
                    │ engineers?          │
                    └──────────┬──────────┘
                               │
                  No ──────────┼────────── Yes
                  │            │            │
                  ▼            │            ▼
        ┌─────────────────┐    │    ┌─────────────────┐
        │ Start with      │    │    │ Are domain      │
        │ Modular         │    │    │ boundaries      │
        │ Monolith        │    │    │ clear & stable? │
        └─────────────────┘    │    └────────┬────────┘
                               │             │
                               │    No ──────┼────── Yes
                               │    │        │        │
                               │    ▼        │        ▼
                               │  ┌────────────────┐  ┌────────────────┐
                               │  │ Modular        │  │ Do teams need  │
                               │  │ Monolith       │  │ independent    │
                               │  │ (clarify       │  │ deployments?   │
                               │  │ domains first) │  └───────┬────────┘
                               │  └────────────────┘          │
                               │                     No ──────┼────── Yes
                               │                     │        │        │
                               │                     ▼        │        ▼
                               │             ┌──────────────┐ │ ┌────────────────┐
                               │             │ Modular      │ │ │ MICROSERVICES  │
                               │             │ Monolith     │ │ │ (Proceed with  │
                               │             └──────────────┘ │ │ caution)       │
                               │                              │ └────────────────┘

Migration Strategies: From Monolith to Microservices

If you've determined microservices are the right path, never do a "big bang" rewrite. Use incremental strategies:

Strategy 1: Strangler Fig Pattern

The safest approach—gradually replace functionality:

Phase 1: Add a facade layer
┌─────────────────────────────────────────┐
│              API Gateway                 │
│         (Routes all traffic)             │
└──────────────────┬──────────────────────┘
                   │
                   ▼
┌─────────────────────────────────────────┐
│              Monolith                    │
│  [Users] [Orders] [Inventory] [Billing] │
└─────────────────────────────────────────┘

Phase 2: Extract first service
┌─────────────────────────────────────────┐
│              API Gateway                 │
└───────────────┬─────────────────────────┘
                │
      ┌─────────┴─────────┐
      │                   │
      ▼                   ▼
┌───────────┐   ┌─────────────────────────┐
│  Users    │   │        Monolith         │
│  Service  │   │ [Orders] [Inv] [Billing]│
└───────────┘   └─────────────────────────┘

Phase 3: Continue extraction
┌─────────────────────────────────────────┐
│              API Gateway                 │
└──┬─────────┬──────────┬──────────┬──────┘
   │         │          │          │
   ▼         ▼          ▼          ▼
┌──────┐ ┌───────┐ ┌─────────┐ ┌───────┐
│Users │ │Orders │ │Inventory│ │Billing│
│Svc   │ │Svc    │ │Svc      │ │Svc    │
└──────┘ └───────┘ └─────────┘ └───────┘

Strategy 2: Branch by Abstraction

For internal refactoring within the monolith:

// Step 1: Create abstraction
interface NotificationService {
  send(userId: string, message: string): Promise<void>;
}

// Step 2: Implement with legacy code
class LegacyNotificationService implements NotificationService {
  async send(userId: string, message: string) {
    // Old email-based implementation
  }
}

// Step 3: Implement with new service
class MicroserviceNotificationService implements NotificationService {
  async send(userId: string, message: string) {
    await fetch("http://notification-service/send", {
      method: "POST",
      body: JSON.stringify({ userId, message }),
    });
  }
}

// Step 4: Feature flag to switch
const notificationService = featureFlag.isEnabled("new-notifications")
  ? new MicroserviceNotificationService()
  : new LegacyNotificationService();

Strategy 3: Database-First Decomposition

Sometimes data is the constraint, not code:

Step 1: Identify data boundaries
┌──────────────────────────────────────────────┐
│                Shared Database               │
│  ┌─────────┐ ┌─────────┐ ┌─────────┐        │
│  │ users   │ │ orders  │ │inventory│        │
│  │ table   │ │ tables  │ │ tables  │        │
│  └─────────┘ └─────────┘ └─────────┘        │
└──────────────────────────────────────────────┘

Step 2: Create views/sync for transition
┌─────────────┐   ┌─────────────┐
│ Users DB    │   │ Shared DB   │
│ (Primary)   │←→ │ (users view)│
└─────────────┘   └─────────────┘

Step 3: Complete separation
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│  Users DB   │ │  Orders DB  │ │Inventory DB │
└─────────────┘ └─────────────┘ └─────────────┘

Anti-Patterns to Avoid

1. Distributed Monolith

The worst of both worlds—microservices that must be deployed together.

Signs you have this problem:

  • Can't deploy one service without deploying others
  • Circular dependencies between services
  • Shared database tables across services
  • Services calling each other synchronously for every operation

2. Premature Decomposition

Extracting services before understanding domain boundaries.

Result: Constant refactoring as you merge/split services.

3. Nano-Services

Too many tiny services increase overhead exponentially.

Rule of thumb: A service should be owned by 3-8 people.

4. Ignoring Organizational Readiness

Microservices without:

  • Platform engineering support
  • Observability infrastructure
  • DevOps maturity
  • On-call culture

Result: Slower, not faster development.

Key Takeaways

PrincipleGuidance
Start SimpleDon't start with microservices. Start with a modular monolith
Enforce BoundariesKeep monolith modular using code (strictly defined public interfaces)
Extract StrategicallyOnly extract when a specific module becomes a bottleneck
Invest in PlatformMicroservices require platform engineering investment
Measure the Right ThingsDeployment frequency, lead time, not number of services
Understand the CostsDistributed systems complexity is real and expensive

The Verdict

Don't start with microservices. Start with a monolith. Keep it modular. Enforce boundaries between modules using code (e.g., strictly defined public interfaces).

If—and only if—a specific module becomes a bottleneck (deployment speed or resource scaling), extract that specific module into a microservice. This is the organic path to a distributed system.

Remember: The goal is to solve business problems, not to have the most microservices. Choose the architecture that lets your team deliver value fastest with acceptable quality.


Facing architectural decisions or considering a migration? Contact EGI Consulting for an architecture assessment and a roadmap tailored to your team size, domain, and business goals.

Related articles

Keep reading with a few hand-picked posts based on similar topics.

Posted in Blog & Insights